NUTRITION DEMAND, SUBSISTENCE FARMING, AND AGRICULTURAL PRODUCTIVITY

STEPAN GORDEEV University of Rochester

NUTRITION DEMAND, SUBSISTENCE FARMING, AND AGRICULTURAL PRODUCTIVITY

- Low-income countries dominated by unproductive agriculture
 - Malawi: **76%** of employment, **23%** of GDP in agriculture
 - low agricultural productivity critical for cross-country income differences
- Subsistence farming is common
 - Malawi: $\frac{3}{4}$ of households cultivate own land, 11% sell most of the output

What are the implications of subsistence farming for aggregate agricultural productivity?

- what drives the production choices of subsistence farmers?

```
own nutritional needs + trade frictions

∨
farm targets family nutrition demand
∨
product choice ≠ comparative advantage
∨
agricultural productivity ↓
```

PREVIEW

Model:

- farm-operating households
- heterogeneous agricultural products
- explicit caloric needs

DATA:

survey of households in Malawi

FARM BEHAVIOR IN MODEL & DATA:

- smallest farms focus on calories
- medium farms shift to dietary diversity
- large farms shift to manufactured goods
- → specialize in staples
- \rightarrow diversify production
- → produce & sell marketable goods

· AGGREGATE PRODUCTIVITY:

- − trade costs \downarrow s.t. farm commercialization 16% → 50%:
- → aggregate agricultural productivity ↑ 42%
 - $\star~\sim$ half due to improved farm product choice
 - $\star\,$ smallest farmers gain the most

LITERATURE

economics literature:

SUBSISTENCE FARMING & AGRICULTURAL PRODUCTIVITY

- Gollin and Rogerson (2014), Rivera-Padilla (2020), Sotelo (2020), Kebede (2020)
 - region/village-level subsistence
 - remote regions trade little
 - → subsistence depresses agricultural productivity

nutrition literature:

SUBSISTENCE FARMING & NUTRITION

- Jones (2017), Sibhatu et al. (2015)
 - smallholder farm biodiversity related to dietary diversity
 - especially with poor market access
 - → farm characteristics matter for nutritional outcomes

THIS PAPER:

- explore farm-level subsistence, document scale-dependent product choice
- propose nutrition demand as explanation
- explicitly model caloric needs, explore role in aggr. agricultural productivity

DATA

DATA

- Survey of households in Malawi (2016–2017)
 - government + World Bank
 - nationally representative, 12.5k HHs
 - 79% operate a farm ← my sample
- · Detailed data on HH characteristics and activity
 - characteristics of family members
 - food consumed (past week)
 - agricultural inputs & outputs
 - agricultural inputs & outputs
 - employment and non-farm enterprises
 - ▶ food ▶ output

- → HH kcal & nutrient requirements
- \rightarrow HH kcal & nutrient intakes
- \rightarrow HH output & sales
- $\rightarrow \mathsf{HH} \; \mathsf{non}\text{-}\mathsf{farm} \; \mathsf{income}$
- · Rescale HH kcal intake, output, income by HH kcal requirement
 - → "per capita" measures, weighted by energy needs

MALAWIAN FARMS ARE SMALL

SEMI-SUBSISTENCE IS COMMON

- Farming is important for HH consumption:
 - foods self-produced (count): 24%
 - kcal self-produced: 36%
- $\frac{1}{2}$ of farms **sell none** of their output
 - avg share of output sold: 16%

MODEL

MODEL OBJECTIVES

- Is farm subsistence important for aggregate productivity?
 - quantitative counterfactual experiments
- Model that can generate HH-level subsistence
 - farm-operating HH
 - consumption and production decisions are non-separable
 - preferences to generate realistic food consumption
- Compare predicted farm behavior to data
 - extract predictions on farm product choice

MODEL: HH PROBLEM

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_ic_{h,i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_mc_{h,m}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}-\underbrace{f\left(\sum_{i=1}^nc_{h,i}k_i,\ K_{req,h}\right)}_{\text{kcal deviation penalty}}\\ \sum_{i=1}^n\frac{x_{h,i}}{z_{h,i}}\leq L_h\\ \sum_{i=1}^nx_{h,i}^pp_id+p_mc_{h,m}\leq \sum_{i=1}^nx_{h,i}^s\frac{p_i}{d}+wN_h$$

- HH h consumes n foods $\{c_{h,i}\}_{i=1}^n$ and a manufactured good $c_{h,m}$ foods differ in kcal content k
- HH prefers $\sum_{i=1}^{n} c_{h,i} k_i \approx \underbrace{K_{req,h}}_{\text{caloric}}$
- For each good *i*, HH *h* can $\begin{cases} \text{produce } x_{h,i} \text{ with productivity } z_{h,i} \\ \text{purchase } x_{h,i}^p \text{ or sell } x_i^s \text{ at } p_i \text{ with trade cost } d > 1 \end{cases}$

CALORIC DEVIATION PENALTY f

· Caloric deviation penalty fn (▶ properties):

$$f\left(\sum_{i} C_{h,i} k_{i}, K_{req,h}\right) = \psi\left(\frac{\sum_{i} C_{h,i} k_{i} - K_{req,h}}{K_{req,h}}\right)^{2} \frac{K_{req,h}}{\sum_{i} C_{h,i} k_{i}}$$

• As $\psi \to 0$, preferences \to pure CES

CALIBRATION: AGRICULTURAL GOODS

- · 6 agricultural goods commonly produced and consumed
 - ▶ list

Agricultural goods are heterogeneous in

- 1. taste weight φ_i
 - consumption FOC ightarrow estimable expression ightarrow identify $\{ arphi_i \}_i, \, \sigma$
 - ▶ estimation
- 2. kcal density k_i
 - food composition tables
- 3. distribution of productivity across households $Z_{h,i}$
 - GAEZ: crop-location-level attainable yield predicted by local soil and climate
 - fit a cross-household lognormal distribution for each crop in GAEZ

HH HETEROGENEITY

- 1. Non-farm income wN_h distribution
 - lognormal + mass at $wN_h = 0$
- 2. Land L_h distribution
 - lognormal
 - mean: target avg kcal intake kcal requirement to ensure realistic scale
 - variance: target output value variance
- 3. Good productivity $z_{h,i}$ distributions
 - HHs take independent draws for each good

GENERAL EQUILIBRIUM: MANUFACTURER

· Representative competitive manufacturer:

$$\max p_m Y_m - wN$$

s.t.

$$Y_m = z_m \underbrace{N}_{\sum_h N_h}$$

- normalize $p_m = z_m = 1$
- zero profits $\rightarrow w = 1$

GENERAL EQUILIBRIUM: AGRICULTURAL GOODS

• Solve for agricultural prices $\{p_i\}_i$ s.t. edible good markets clear:

$$\frac{1}{d}\sum_{h}x_{h,i}^{s}=d\sum_{h}x_{h,i}^{p}\quad\forall i$$

- · Tobacco market doesn't need to clear
 - data: tobacco accounts for 60% of Malawi's exports
 - tobacco traded internationally at exogenous \bar{p}_t
 - some manufactured good is imported to balance the trade:

$$\underline{\bar{p}_{\text{tobacco}}\left(\frac{1}{d}\sum_{h}x_{h,\text{tobacco}}^{s}-d\sum_{h}x_{h,\text{tobacco}}^{p}\right)} = \underline{p_{m}\left(\sum_{h}c_{h,m}-Y_{m}\right)}$$
tobacco exports
$$\underline{-1}_{\text{tobacco}}\sum_{h}x_{h,\text{tobacco}}^{s}-d\sum_{h}x_{h,\text{tobacco}}^{p}\right)}$$
manuf. good imports

ESTIMATION

parameter	value	moment/source	data moment	model moment
Distributions				
$\mathbb{E}\left(\log L_h\right)$	-15	avg $K_{in,h}/K_{req,h}$	1.036	0.902
$V(\log L_h)$	1.5	V(log output _h)	1.528	1.385
$P(N_h=0)$	0.112	P (non-farm income _h = 0)	0.112	0.117
$V(\log N_h \mid N_h > 0)$	2.103	V (log non-farm income _h)	2.103	1.924
Parameters				
σ (EoS across foods)	0.75	estimated	_	_
γ (EoS between food & manuf.)	1	_	_	_
d (agricultural trade cost)	1.75	avg share sold	0.159	0.203
ψ (kcal deviation penalty)	0.5	output elasticity of K_{in}	0.091	0.124
Good characteristics				
$arphi_{m}$ (manuf. taste weight)	0.5	aggr. non-farm income aggr. farm output	1.539	1.632
$\bar{p}_{\mathrm{tobacco}}/p_{\mathrm{maize}}$	5.4	aggr. tobacco output share	0.091	0.094

▶ solution strategy

FARM BEHAVIOR IN MODEL AND DATA

CALORIES SKEW CONSUMPTION: MODEL

- · Consider the problem of a household
- Suppose $\psi > 0$ (benchmark), $\sum_i c_i k_i < K_{req}$

$$\underbrace{MU_{i}^{CES}(c_{i})}_{\downarrow} - \underbrace{k_{i}f_{1}\left(\sum_{i}c_{i}k_{i}, K_{req}\right)}_{\leq 0, \downarrow} = MC_{i}$$
 (c_i FOC)

- $\cdot k_i = 0 \rightarrow k_i f_1 \left(\sum_i c_i k_i, K_{req} \right) = 0$
- \cdot $k_i > 0 \rightarrow k_i f_1 \left(\sum_i c_i k_i, \ K_{req} \right) \downarrow \rightarrow MU_i^{CES} \downarrow \rightarrow c_i \uparrow$
- When energy intake < requirement, consume more efficient sources of calories
- · Why these non-homothetic preferences?
 - endogenous predictions on allocation across agricultural goods
 - produces structural transformation forces across sectors and within agriculture
 - ightarrow predictions on kcal-diversity tradeoff in consumption and on farm product choice

POOREST MAXIMIZE KCAL: MODEL

· Extreme poverty limit:

$$\max\left((1-\varphi_m)\left(\sum_{i=1}^n\varphi_iC_{h,i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}\frac{\gamma-1}{\gamma}}+\varphi_mC_{h,m}^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}-f\left(\sum_{i=1}^nC_{h,i}k_i,\ K_{req,h}\right)\right)$$

$$\downarrow L_h,wN_h\to 0$$

$$\max\sum_{i=1}^nC_{h,i}k_i$$

- In the limit, goods are perfect substitutes \rightarrow consume at most 2:
 - $arg max_i k_i/p_i$ (good with lowest price of 1 kcal)
 - $\operatorname{arg} \operatorname{max}_{i} k_{i} z_{h,i}$ (good with highest kcal productivity)

Farm Size $\uparrow \rightarrow$ Shift From Dietary Energy to Diversity: Model & Data

	log kcal intake			food diversity ► def ► nutrients		
	$\begin{array}{c} model: \\ \psi = 0 \end{array}$	model: benchmark	data	$\begin{array}{c} \text{model:} \\ \psi = 0 \end{array}$	model: benchmark	data
log output	0.663	0.124	0.091***	-0.082	0.428	0.395***
	(0.002)	(0.001)	(0.005)	(0.002)	(0.002)	(0.034)
log non-farm	0.354	0.084	0.063***	0.041	0.396	0.857***
income	(0.004)	(0.001)	(0.004)	(0.002)	(0.002)	(0.033)
N	29,168	33,613	8,674	29,168	33,613	8,675
Adj. R ²	0.919	0.393	0.063	0.085	0.762	0.131

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

- \cdot $\psi=$ 0 (pure CES): relative consumptions invariant to size/income
 - kcal intake ↑ proportionally to total shadow income, diversity constant
- $\psi > 0$ (benchmark): reallocate resources from calories to diversity as size/income \uparrow
 - kcal intake ↑ little with total shadow income, diversity ↑

FARM SALES ARE SPECIALIZED: MODEL & DATA

- · Model: each farm sells at most one good
 - the revenue-maximizing one: $arg max_i p_i z_{h,i}$
 - can produce more goods for own consumption
- DATA: sales are specialized compared to overall production
 - 69% sell just 1 good, only 9% produce just 1 good
 - on avg, top good accounts for 91% in sales but 67% in output

LOWER TRADE COSTS → ALL SPECIALIZE: MODEL & DATA

- MODEL: $d \downarrow \rightarrow$ specialize production
 - $-\,$ below some cutoff $ilde{d}_h$, HH h only produces the revenue-maximizing good
- DATA:
 - HHs with better market access specialize production
 - **▶** table

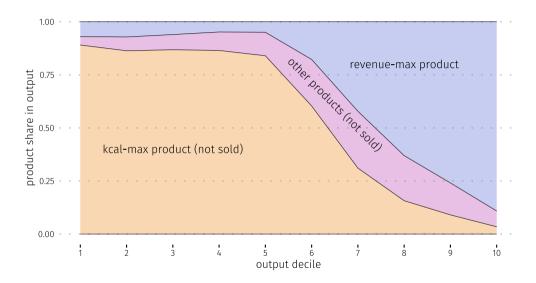
LARGE FARMS SELL MORE: MODEL & DATA

· Larger farms are more active sellers:

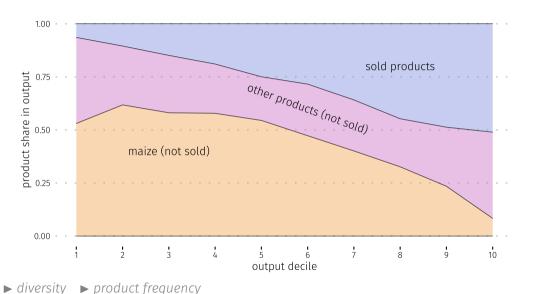
output quartile	sold out	out share	fraction sellers		
	model	data	model	data	
1	<1%	13%	<1%	14%	
4	67%	31%	>99%	77%	

- Pure CES Model: no scale dependence in selling behavior

- · What's missing from the model? Risk
 - volatile harvest/prices → specializing in cash crops raises starvation risk
 - ightarrow risk should smooth the size-selling relationship


SMALLEST FARMS SPECIALIZE PRODUCTION: MODEL

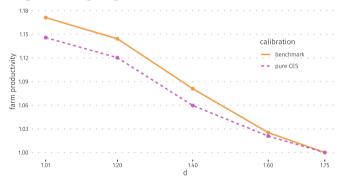
• Extreme poverty limit: production converges to perfect specialization


$$\lim_{L_h, wN_h \to 0} (\# \text{ goods produced}) = 1$$

- maximize kcal intake \rightarrow specialize consumption \rightarrow specialize production
- There is a cutoff trade cost \bar{d}_h :
 - $ightharpoonup \bar{d}_h$
 - if $d < \bar{d}_h$, produce the most revenue-productive good: $arg \max_i p_i Z_{h,i}$
 - if $d>ar{d}_h$, produce the most kcal-productive good: $arg max_i k_i z_{h,i}$

LARGER FARMS DIVERSIFY, SHIFT TO MARKETABLE GOODS: MODEL

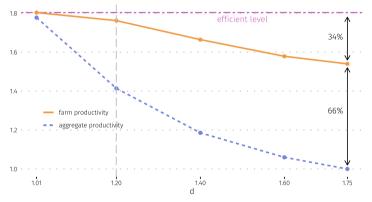
LARGER FARMS DIVERSIFY, SHIFT TO MARKETABLE GOODS: DATA



AGGREGATE COUNTERFACTUALS

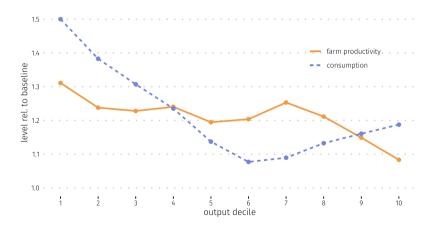
- Model: trade costs \rightarrow nutrition demand influences product choice
- · How relevant is it for aggregate agricultural productivity?
- Conduct counterfactual reductions in domestic agricultural trade costs ($d\downarrow$)
 - measure effect on productivity

Trade Costs $\downarrow \rightarrow$ Farm Productivity \uparrow


- Total "farm-gate" productivity: $\frac{\sum_h \sum_i x_{h,i} p_i}{\sum_h L_h}$
 - does not count mechanical losses from d
 - deflate using chain-weighting between consecutive d values

 \cdot $d \downarrow \rightarrow$ farmers choose products they are productive at \rightarrow farm productivity \uparrow

Trade Costs $\downarrow \rightarrow$ Aggregate Productivity \uparrow


- · Compare "farm-gate" production to final consumption ("aggregate productivity")
 - farm production only accounts for product choice changes
 - final consumption also accounts for mechanical losses from d

- $d \rightarrow 1$: aggr. productivity \uparrow 78% ($\frac{1}{3}$ due to product choice)
- $d\downarrow$ s.t. avg share sold 16% \rightarrow 50%: aggr. productivity \uparrow 42% ($\frac{1}{2}$ due to product choice)

Trade Costs $\downarrow \rightarrow$ Heterogeneous Effects in Farm Size

- $d \downarrow$ s.t. avg share sold 16% \rightarrow 50%:
 - farm productivity: small ↑ the most, large ↑ the least
 - consumption: small ↑ the most, medium ↑ the least

CONCLUSION

- Subsistence farmer nutrition demand → subsistence farm production decisions
 - smallest farms specialize in calorie consumption & production
 - medium farms diversify diet & production
 - largest farms become market-oriented
- Farm production decisions → aggregate agricultural productivity ↓
 - trade costs \downarrow s.t. farms just leave subsistence \rightarrow agric. productivity \uparrow
 - half because improved product choice, half because less is lost to trade cost

FUTURE RESEARCH

- · Analyze government programs targeting smallholder farmers
 - smallholder farmer support is central to public policy in poor countries
 - e.g. encourage staples, biodiversity, or cash crops?
 - framework well suited for predicting nutritional, economic outcomes
- Interaction of nutrition with labor choice
 - allocate labor between own farm, other farms, and non-agricultural sector
 - study structural transformation between sectors and within agriculture jointly

FOOD

- Food consumption
 - HH-product consumption in past week
- Food composition
 - product nutritional contents from Malawian and Tanzanian food composition tables
 - → obtain HH-level calorie and nutrient intakes
- Nutritional needs
 - kcal requirement for each individual (age, sex) from FAO's Human Energy Requirements
 - nutrient daily recommended allowances from Dietary Guidelines for Americans
 - → obtain HH-level calorie and nutrient requirements

OUTPUT & INCOME

- Farm output
 - HH-product output in past year
 - sales if any
 - total farm output: quantities weighted by median sale price
- · Non-farm income
 - income from employment and non-farm enterprises

$$f(\sum_{i} c_{i}k_{i}, K_{req})$$
 PROPERTIES

Properties:

1.
$$f(bK_{in}, bK_{req}) = f(K_{in}, K_{req})$$

2.
$$f(bK_{req}, K_{req}) = f\left(\frac{K_{req}}{b}, K_{req}\right)$$

3.
$$\min_{K_{in}>0} f(K_{in}, K_{req}) = f(K_{req}, K_{req}) = 0$$

4.
$$f_{11}(K_{in}, K_{req}) = \frac{2\psi K_{req}}{K_{i}^{3}} > 0$$

(homogeneity of deg. 0) (symmetry around K_{reg} in ratios)

(minimum and zero if eat K

(minimum and zero if eat K_{req})
(convex in intake)

back

AGRICULTURAL GOODS USED IN CALIBRATION

- · Selected goods:
 - 1. maize
 - 2. pigeonpea
 - 3. groundnut
 - 4. tomato
 - 5. soybean
 - 6. tobacco
- · These goods account for, on average,
 - 70% of HH output market value
 - 43% of HH food consumption market value

ESTIMATION OF EOS AND TASTE WEIGHTS

• Consumption FOC \rightarrow if *i* is produced by *h*, then

$$\log c_{h,i} \approx \underbrace{\gamma(\log p_m - \log \frac{\varphi_m}{1 - \varphi_m})}_{\text{constant}}$$

$$+\log c_{h,m} - \sigma \log \lambda_h + \gamma \log \mu_h + \frac{\gamma - \sigma}{\sigma - 1} \log \left(\sum_{j=1}^n \varphi_j^{\sigma} \left(\eta_{h,j} + f_1 \left(\sum c_{h,j} k_j, K_{req,h} \right) k_j \right)^{1 - \sigma} \right)$$

HH-produced FE

$$+\underbrace{\sigma\log\varphi_{i}}_{\mathsf{good}\;\mathsf{FE}} + \sigma\underbrace{\log\mathsf{Z}_{h,i}}_{\mathsf{X}_{1,h,i}} - \underbrace{k_{i}\mathsf{Z}_{h,i}}_{\mathsf{X}_{2,h,i}} \cdot \underbrace{\sigma\underbrace{\int_{1}^{f_{1}}\left(\sum_{j}\mathsf{c}_{h,j}k_{j},\mathsf{K}_{\mathsf{req},h}\right)}_{\mathsf{HH-produced}\;\mathsf{FE2}}}_{\mathsf{HH-produced}\;\mathsf{FE2}}$$

- Analogous expression if i is purchased by $h\left(X_{1,h,i} = \log p_i d_h, X_{2,h,i} = \frac{k_i}{p_i d_h}\right)$
- \rightarrow Can estimate food taste weights $\{\varphi_i\}_i$, elasticity of substitution across foods σ

SOLUTION STRATEGY

- Each HH needs to be solved as an independent problem
- Simulation
 - 500 HH types take independent draws form N_h and $\{z_i\}_i$ distributions
 - within each type, approximate the L_h distribution using 80 sub-types
 - ightarrow solve economy with 40,000 HHs

CUTOFF TRADE COST \bar{d}

$$\bar{d}_h = \sqrt{\frac{\max_i p_i Z_{h,i}}{\min_i p_i / k_i \cdot \max_i k_i Z_{h,i}}}$$

PRODUCTION DIVERSITY

Production Diversity = Inverse Simpson Index

Production Diversity_h =
$$\left(\sum_{i=1}^{n} \left(\frac{\text{output}_{h,i}}{\sum_{j=1}^{n} \text{output}_{h,j}}\right)^{2}\right)^{-1}$$

where n is the total number of agricultural products, output_{h,i} is the market value of product i produced by h's farm.

- · Simpson Index: sum of squared product output shares within farm's output
 - same as HHI
 - interpretation: probability that two random dollars of output come from the same product
- Inverse Simpson Index = $\frac{1}{SI}$, commonly used in measuring species diversity

FOOD DIVERSITY

Food Diversity = Inverse Simpson Index

Food Diversity_h =
$$\left(\sum_{i=1}^{n} \left(\frac{\text{food quantity}_{h,i} \times \text{median purchase price}_i}{\sum_{j=1}^{n} \text{food quantity}_{h,j} \times \text{median purchase price}_j}\right)^2\right)^{-1}$$

where h is the HH index, n is the total number of distinct foods in the dataset.

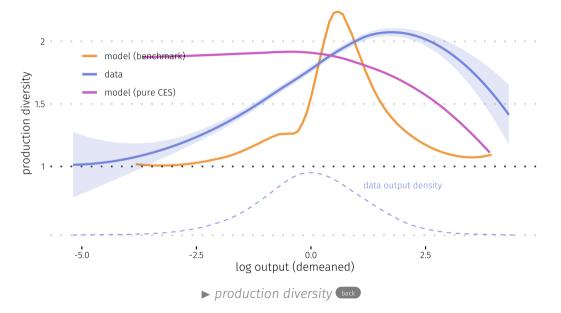
- · Simpson Index: sum of squared food shares within HH's consumption
 - same as HHI
 - interpretation: probability that two random dollars of (shadow) food expenditure come from the same product
- Inverse Simpson Index = $\frac{1}{SI}$, commonly used in measuring species diversity

NUTRIENT RICHNESS

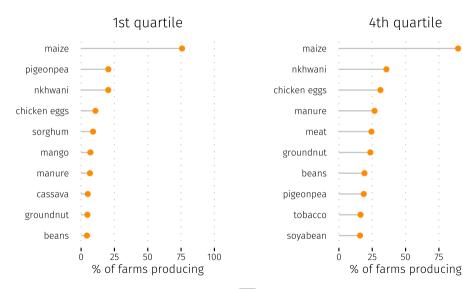
	NRF9		NRF9.3	
_	(1)	(2)	(3)	(4)
log output	17.046***	5.695***	-13.296***	-13.400***
	(0.964)	(0.724)	(3.326)	(3.358)
log non-farm income	10.285***	2.441***	-7.257**	-7.305**
	(0.792)	(0.603)	(3.898)	(3.548)
log kcal intake		124.025*** (2.282)		0.550 (26.234)
N	8,675	8,674	8,675	8,674
Adj. R ²	0.054	0.451	0.002	0.002

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

- NRF9: sum of daily intakes (relative to recommended level) of 9 nutrients
- NRF9.3: subtracts the relative excessive consumption of 3 disqualifying nutrients



LOWER TRADE COSTS → ALL SPECIALIZE: DATA


	production (production diversity	
sold output share	-0.044*** (0.016)		
1 [good mkt access]		-0.164*** (0.018)	
N	4,042	8,675	
Adj. R ²	0.025	0.099	
* p < 0.1, ** p < 0.05,	*** p < 0.01		

NOTE. Controls: log output, log non-farm income.

LARGER FARMS DIVERSIFY, LARGEST SPECIALIZE: MODEL & DATA

PRODUCT FREQUENCY BY SIZE: DATA

100